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ABSTRACT 
 

Soft materials capable of transforming between three-dimensional (3D) shapes have 
applications in areas as diverse as flexible electronics, soft robotics, and biomedicine. This thesis 
introduces a method of printing ferromagnetic domains in soft materials that yield fast trans-
formation between complex 3D shapes via magnetic actuation. This approach is based on direct 
ink writing of an elastomer composite containing hard ferromagnetic microparticles. By applying 
a magnetic field to the dispensing nozzle while printing, we make the particles reoriented along 
the applied field direction to impart patterned magnetic polarity to printed filaments. This method 
allows us to design ferromagnetic domains in 3D-printed soft materials encoded with complex 
programmed shapes. A mathematical model based on a continuum mechanics framework is 
developed to predict such complex transformation of printed structures under the applied magnetic 
fields. For this computational model, a constitutive law is developed to describe the behavior of 
soft materials incorporating hard ferromagnetic microparticles under applied magnetic fields. The 
capability to quantitatively predict the shape changes enables designing a set of previously 
inaccessible modes of transformation such as remotely controlled 3D auxetic behaviors in an 
extremely fast and fully reversible manner via magnetic actuation. The actuation speed and power 
density of the printed soft materials with programmed ferromagnetic domains are orders of 
magnitude greater than existing 3D-printed active materials. Diverse functions derived from the 
fast and complex shape changes such as reconfigurable soft electronics, interaction with quickly 
moving objects, rolling-based locomotion and delivery of drug pills, and a horizontal leap of a 3D 
auxetic structure.  
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1. INTRODUCTION 
 
1.1  Shape-programmable Soft Active Materials 
  

Soft materials are in general more favorable to biological systems or human bodies owing 

to their inherent softness than their rigid counterparts. A class of soft materials that are responsive 

to external stimuli are called soft active materials. The stimuli to which such materials respond 

include light, heat, solvent, electric and magnetic fields (1-7). If one can achieve certain desired 

shapes from such materials, by applying or controlling the external stimuli, those materials are 

shape-programmable soft active materials. Such soft materials capable of transforming between 

three-dimensional (3D) shapes in response to external stimuli have attracted great attention due to 

their emerging applications in areas as diverse as electronic devices (1, 2), soft robotics (3, 4), drug 

or cell delivery (5, 6), and tissue engineering (7).  

 

1.2  Magnetically Responsive Soft Materials: Challenges 
 

As most biological systems are magnetically transparent, magnetic fields can offer a safe 

and effective manipulation platform for biomedical applications, which typically require remote 

actuation in enclosed and confined spaces (8, 9). Another advantage is that magnetic fields and 

their spatial gradients can be generated independently, which allows decoupling the resulting mag-

netic torques and forces into two different types of actuation (10). Furthermore, recent progress on 

spatially selective control of magnetic fields is accelerating the use of magnetic actuation for 

clinical applications such as targeted drug delivery or adaptive medical implants(10, 11). 

Aligned with the advances in magnetic field control, magnetically responsive soft materials 

have also evolved from embedding discrete magnets (12) or incorporating magnetic particles (13) 

into soft compounds to generating nonuniform magnetization profiles in polymeric sheets (14, 15). 

In response to the applied fields, these magnetic soft materials have created multiple modes of 

locomotion such as crawling, walking, and swimming based on simple bending or undulating 

deformation under rotating magnetic fields. However, the level of complexity of their shape 

changes is far lower than is required for many applications, due mainly to the lack of capabilities 

to create complex 3D structures with soft materials that are encoded with complicated patterns of 

magnetic domains, which has remained a central challenge in the field.  
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1.3  Printing Ferromagnetic Domains in Soft Materials 
 

The key concept that passes through the entire thesis is the idea of directly printing 

magnetic domains in soft materials. Magnetic domains in ferromagnetic materials typically refer 

to regions in which the magnetization vectors are aligned in the same direction to have overall 

magnetic polarities in certain directions. Therefore, the concept of printing ferromagnetic domains 

in soft materials means creating patterns of magnetic polarities in 3D-printed soft materials. This 

method is based on direct ink writing (16) of an uncured elastomer composite which contains 

magnetizable microparticles, which, after being magnetized, can be regarded as small permanent 

magnets. The key idea behind this method is applying a magnetic field on the dispensing nozzle 

during printing in order to make the magnetized particles reoriented along the applied field 

direction, which gives rise to patterned magnetic polarity in printed filaments. This new fabrication 

technique enables designing ferromagnetic domains in 3D-printed soft materials with complex 

morphologies. After curing, such ferromagnetic soft materials quickly transform into complex 3D 

shapes upon application of magnetic fields while exhibiting multiple modes of transformation 

depending on the applied field direction and strength.  

 

1.4  The Scope of the Thesis 
 

This thesis aims to first provide a detailed description of the aforementioned method of 

printing ferromagnetic domains in soft materials. In Chapter 2, we will identify a few of design 

parameters which play key roles in the printing process, which are supported by experimental 

characterizations and analytical interpretations. In the following sections, a variety of examples 

from one-dimensional to 3D structures which exhibit complex shape changes will be presented 

with detailed discussions. In Chapter 3, a mathematical model based on a continuum mechanics 

framework will be developed to quantitatively predict such complex transformations of the printed 

structures under the applied magnetic fields. In Chapter 4, the actuation performance including the 

actuation speed and the power density of the printed shape-morphing structures will be evaluated 

and discussed in comparison with existing 3D-printed active materials based on hydrogels, shape 

memory polymers, and liquid crystal elastomers. 
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2. PRINTING FERROMANGETIC DOMAINS IN SOFT MATERIALS  
 
2.1  Method of Printing Ferromagnetic Domains in Soft Materials 
 

The composite ink for 3D printing consists of magnetizable microparticles of neodymium-

iron-boron (NdFeB) alloy (Fig. 2.1a) and fumed silica nanoparticles(Fig. 2.1b) embedded in a 

silicone rubber matrix containing silicone catalyst and crosslinker (Fig. 2.2). The fumed silica 

within the silicone resin serves as a rheological modifier to induce mechanical properties required 

for direct ink writing (3, 16) including shear thinning (Fig. 2.3a) and shear yielding (Fig. 2.3b). 

These properties ensure that the composite ink can be extruded through a micro-nozzle when 

pressurized and that the deposited inks maintain their shapes even when stacked up to form 

multiple layers. The composite ink is prepared first by mixing the non-magnetized NdFeB particles 

and the silica nanoparticles with the uncured elastomer matrix and then magnetized to saturation 

under an impulse field (~2.7 T). The presence of shear yield stress in the composite ink helps 

prevent the dispersed magnetized particles from agglomerating to form large clusters (Fig. 2.4). 

During the printing process, a magnetic field is applied along (or reverse to) the flow 

direction of the ink via a permanent magnet or an electromagnetic coil placed around the 

dispensing nozzle (Fig. 2.2). The applied field makes the magnetized NdFeB particles reoriented 

along the field direction, imparting a permanent magnetic moment to the extruded ink filament. 

The magnetic polarities of the deposited inks can be tuned either by switching the applied field 

direction or changing the printing direction. Using this approach, a 3D structure can be encoded 

with intricate patterns of ferromagnetic domains depending on the magnetic polarities of the 

filaments that are arranged to construct the 3D structure. To avoid interference in the programmed 

domains of the printed structure by the applied field at the nozzle, a magnetic shield is used to 

attenuate the magnetic flux density under the nozzle tip (Fig. 2.2). When the printing process is 

completed, the printed structure is cured at 120 °C for 1 hr, during which the presence of the shear 

yield stress in the uncured ink helps the programmed ferromagnetic domains to remain unaffected 

by thermal randomization of the aligned particles. 

 

 



 12 

 
 
Fig. 2.1 | Scanning electron microscope images of NdFeB and fume silica particles. (a) 

Magnetizable microparticles of neodymium-iron-boron (NdFeB) alloy in flake-like shapes with 

an average size of 5 µm and (b) fumed silica nanoparticles with an average size of 30 nm. 

 

 

 
 
Fig. 2.2 | Schematics of the printing process and the material composition. The magnetized 

microparticles embedded in the elastomer matrix of the composite ink are reoriented by the applied 

magnetic field generated by a permanent magnet or an electromagnet placed around the dispensing 

nozzle. 
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Fig. 2.3 | Rheological properties of composite inks required for printing process. (a) Apparent 

viscosity as a function of applied shear rate and (b) storage modulus as a function of applied shear 

stress (b) for 20 vol% magnetized ink (red), 20 vol% nonmagnetized ink (black), and support ink 

(gray). 

 

 
Fig. 2.4 | Micro-computed tomography images of printed fibers.  A fiber printed with 410 µm-

diameter nozzle in the absence of applied magnetic field. No obvious agglomeration of embedded 

magnetic microparticles in the printed fibers is observed. 
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2.2  Validation of Printed Ferromagnetic Domains 
 

As an illustrative example to demonstrate the ability to program ferromagnetic domains, a 

straight filament is printed with an alternating magnetization pattern as illustrated in Fig. 2.5 by 

switching the applied field direction during the printing. Upon application of a uniform magnetic 

field (200 mT), the straight filament transforms into an “m” shape in 0.1 s (Fig. 2.5), due to the 

torques generated by the particles in printed ferromagnetic domains, and quickly reverts to its 

original shape upon removal of the applied field in 0.2 s. Such rapid, reversible transformation can 

be repeated on demand by magnetic actuation. The simulation conducted in the same conditions, 

including the magnetic and mechanical properties and the applied field as in the experiment, is in 

good agreement with the experimental results (Fig. 2.5), validating the use of model-based 

simulation to guide the design of complex shape-morphing structures with programmed 

ferromagnetic domains. Details about the computational model and the model-based simulation 

will be discussed in Section 3. 

 

 

 
 

Fig. 2.5 | Demonstration of a single fiber with alternating ferromagnetic domains. The printed 

fiber is designed to form an ‘m’ shape in 0.1 s under an applied magnetic field of 200 mT. The 

elastomeric fiber is printed using a nozzle of diameter 840 µm while switching the direction of 

magnetic fields (50 mT at the nozzle tip) generated by an electromagnetic coil that encompasses 

the nozzle. 
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2.2.1  Experimental Validation of Magnetization in Printed Samples 
 

The magnetization of a sample printed with a 410 µm nozzle in the presence of magnetic 

fields (50 mT) was measured while varying the angular position of the printed fibers with respect 

to the horizontal direction (Fig. 2.6a). The maximum magnetization value was measured when the 

printed fibers are aligned with the positive x-direction, in which an external magnetic field is 

applied by the vibrating sample magnetometer. The measured magnetization value decreased as 

the angle increased and reached almost zero when the printed fibers were vertically aligned. When 

the specimen was rotated by 180 degrees, the sign of the measured magnetization was changed, 

indicating that the specimen’s magnetic polarity was reversed, while the magnitude remained 

almost unchanged (Fig. 2.6b). This data demonstrates that the printed fiber direction can represent 

the overall magnetization direction (magnetic polarity) of the printed sample. 

 

 

 
Fig. 2.6 | Experimental validation of the magnetization induced during the printing process. 

(a) Experimental setup with a vibrating sample magnetometer for validating the direction of 

magnetization of a sample printed with a 410 µm nozzle under the presence of magnetic fields (50 

mT). (b) Magnetization values measured while varying the angular position of the printed fibers 

with respect to the external magnetic field applied by the vibrating sample magnetometer. 
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2.2.2  Analytical Interpretation of Magnetization in Printed Samples 
 

When external fields are applied at the nozzle during the printing process, the 

ferromagnetic particles embedded in the composite ink are reoriented along the applied field 

direction, forming angular distributions of magnetic dipole moments, which collectively lead to 

the overall magnetization of the printed samples. The quality of alignment of the ferromagnetic 

particles is thus characterized by measuring the magnetic moment density of the printed samples 

after curing. The measured magnetization value M at certain volume fraction of the NdFeB 

particles can be interpreted as the summed effect of magnetic moments of the embedded particles 

per unit volume, whose angular positions relative to the printing direction can be assumed to follow 

a normal distribution. In other words, the magnetization value can be translated into the standard 

angular deviation of the magnetic dipole moments m of particles relative to the direction of overall 

magnetization M of the printed samples.  

For a printed sample with volume V incorporating N ferromagnetic particles, the 

magnetization M can be mathematically expressed as 
 

   (2.1) 

 
where  represents the saturation magnetization of NdFeB;  the mean volume of a single 

particle; and  the probability density function for Gaussian distributions with ! representing 

the angular deviation of the magnetic dipole moment ( ) of the particle of interest with 

respect to the printing direction, which corresponds to the direction of overall magnetization M. 

Then, for a certain particle volume fraction , which corresponds to , the magnitude 

of the magnetization vector M, denoted as a scalar quantity M, can be expressed as 
 

   (2.2) 

 
with  representing the standard deviation of the normal distribution. This equation directly 
relates the measured magnetization M of the printed samples to the angular distribution of the 
magnetic dipoles that are aligned by the external field applied during the printing process. As a 
result, we can draw curves describing the angular distribution of magnetic dipoles in the printed 
samples ( ) with different magnetization values as shown in Fig. 2.7b.  

M = 1
V

NP(θ )MPVP cosθ dθ−π

π

∫ ,

MP VP
P(θ )

m =MPVP

ϕ ϕ = NVP /V

M = 2ϕMP

1

2πσ 20

π

∫ e
− θ 2

2σ 2 cosθdθ ,

σ

ϕ = 0.2
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In a uniformly magnetized sample (Fig. 2.7a), however, which yields the maximum 

achievable magnetization at the designated volume fraction of NdFeB particles, all magnetic 

dipole moments (m) are pointing the same direction as the overall magnetization vector M. For 

the calculation of the standard deviation  that corresponds to the magnetization value M, 

 is used for the saturation magnetization as the material property of the NdFeB 

particles used in this study. When the inks are printed in the absence of external field and then 

magnetized under impulse fields (~2.7 T) after curing, maximum magnetization can be achieved 

at each volume fraction of NdFeB particles. When compared with this method, printing with 

nozzles of diameter 410 µm under magnetic fields of 50 mT yields magnetization that corresponds 

to 63~64 % of the maximum achievable value at the same concentration of NdFeB particles (Fig. 

2.7a). As discussed above, the gap between the attained magnetic moment density and the 

maximum achievable magnetization can be attributed to the angular deviation of the NdFeB 

particles within the printed samples relative to the applied field direction under the assumption of 

Gaussian distributions (Fig. 2.7b). 
 
 

 
 
Fig. 2.7 | Validation and interpretation of magnetization of printed samples. (a) Magnetic 

moment densities of printed samples with different NdFeB particle volume fractions, which 

correspond to 63~64 % of the maximum achievable magnetization at each volume fraction. (b) 

Analytical interpretation of magnetization values of printed samples as angular distribution of 

magnetic dipole moments.  

 

σ

MP = 650 kA/m
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2.3  Design Parameters in the Printing Process 
 
 To evaluate the efficacy of the proposed method in printing ferromagnetic domains, we 

measured the magnetic moment density, or magnetization, in samples printed under various 

conditions such as the magnetic particle content, the applied field strength, and the nozzle diameter. 

First, samples are printed with magnetic inks containing different volume fractions of NdFeB 

particles through a nozzle with a diameter of 0.41 mm under magnetic fields of 50 mT at the nozzle 

tip. The measured magnetic moment density varies almost linearly from 16 to 81 kA/m as the 

volume fraction of NdFeB particles in the composite ink increases from 5 to 20 % (Fig. 2.8). Next, 

as the applied field at the nozzle tip increases from 20 to 50 mT, the magnetic moment density of 

printed samples (with 20 vol% NdFeB particles through nozzles with 0.41-mm diameter) increases 

from 68 to 81 kA/m (Fig. 2.8). When the nozzle diameter varies from 210 to 1190 µm, the magnetic 

moment density of printed samples (with 20 vol% NdFeB particles under 50-mT field at the nozzle 

tip) increases from 70 to 86 kA/m (Fig. 2.8). Printing in the absence of external magnetic fields, 

however, yields magnetization values below 5 kA/m for all nozzle diameters due to randomly 

oriented particles.  

 

 
 
Fig. 2.8 | Design parameters in the printing process.  Effects of the volume fraction of 

magnetized NdFeB particles, the applied field strength, and the nozzle diameter on the magne-

tization of printed samples. Samples printed in the absence of applied magnetic fields give magne-

tization values below 5 kA/m. Error bars indicate the standard deviation for n = 3 measurements 

at each data point. 
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2.4 Various Designs of Two-dimensional Shape-morphing Structures 
 

In this section, we present a set of two-dimensional (2D) planar structures that rapidly 

transform into complex 3D shapes under the applied magnetic fields (200 mT) due to the 

programmed ferromagnetic domains. In Fig. 2.9 a and d, we design two annular rings with the 

same geometry but different patterns of ferromagnetic domains to illustrate the effects of 

programmed domains on the macroscale response. Our model-based simulation predicts that the 

two rings yield different 3D morphologies under the same magnetic field applied perpendicularly 

to their planes. The second annulus encoded with alternating patterns that vary in magnitude gives 

a more complex undulating shape (Fig. 2.9e) compared to the first annulus (Fig. 2.9b) whose 

alternating patterns are equidistant. The simulation results are in good agreement with 

experimental results (Fig. 2.9 c and f), further demonstrating that our model is capable of guiding 

the design of complex shape-morphing structures based on programming ferromagnetic domains.  

 

 

 
  
Fig. 2.9 | Two identical annular rings with different ferromagnetic domains. Schematic 

designs, finite-element simulations, and experimental results of an annulus encoded with 

alternating domains that are equidistant (a-c) and an annulus encoded with alternating domains 

that vary in size (d-f). 
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When programmed with more intricate domain patterns, even a simple geometry can yield 

a complex 3D shape under an applied magnetic field. As an example, in Fig. 2.10a, we design a 

simple rectangular structure with alternating oblique patterns of ferromagnetic domains to create 

a Miura-ori pattern (17). This untethered structure gives fast (in 0.3 s) and fully reversible folding/ 

unfolding under magnetic actuation (Fig. 2.10c), as predicted by our model (Fig. 2.10b). Notably, 

the response speed of our Miura-ori structure with programmed ferromagnetic domains is much 

faster than existing ones in the literature based on liquid crystal elastomers (18, 19), shape memory 

polymers (20, 21), and thermally responsive hydrogels (22).  

 
 

 
 

Fig. 2.10 | Effect of intricate domain patterns on a simple geometry.  (a) Schematic designs (b), 

finite-element simulations, and (c) experimental results of a Miura-ori fold encoded with 

alternating oblique patterns of ferromagnetic domains. 
 

 
When more intricate designs are programmed with ferromagnetic domains, as illustrated 

in Fig. 2.11, a, d, and g, the 2D planar structures transform into more complex 3D shapes (Fig. 

2.11, c, f, and i) that are no longer straightforward to trace their original shapes without knowing 

the programmed domains. Design and realization of such complex shape-morphing structures are 

enabled by the model-based simulations which accurately predict the complex 3D morphologies 

that are revealed by experiments (Fig. 2.11, b, e, and f). Previously, a transition from 2D planar 

structures to complex 3D shapes has been achieved by controlled buckling of materials that are 

selectively attached on biaxially stretched elastomeric substrates (23, 24). When compared with 

existing techniques, our method based on printing ferromagnetic domains offers additional 

advantages in 2D to 3D structural transition, including (i) substrate-free, remote actuation, (ii) fast 

and fully reversible transformation, and (iii) the capability to selectively actuate specific parts of 

the structure. 
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Fig. 2.11 | Effect of intricate domain patterns on complicated geometries.  Schematic designs, 

finite-element simulations, and experimental results of a hollow cross encoded with alternating 

ferromagnetic domains along the perimeter (a-c); quadrupedal (d-f) and hexapedal (g-i) structures 

enabled by folding of the magnetically active segments surrounding the magnetically inactive 

segments (unlabeled areas in the schematic designs). 

 
 
All demonstrated structures are printed with the elastomeric composite ink containing 20 

vol% of magnetized NdFeB particles using a nozzle with 410-µm diameter under the magnetic 

field of 50 mT at the nozzle tip generated by a permanent magnet. Actuation of the demonstrated 

structures is performed by applying magnetic fields of 200 mT perpendicular to the planes of the 

structures. The detailed dimensions of the printed structures are given in Fig. 2.12. 
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Fig. 2.12 | Schematic designs and dimensions of 2D planar structures. (a) An annulus encoded 

with alternating domains that are equidistant; (b) an annulus encoded with alternating domains that 

vary in size; (c) a Miura fold encoded with alternating oblique patterns of ferromagnetic domains; 

(d) a hollow cross encoded with alternating ferromagnetic domains along the perimeter; and (e) 

quadrupedal and (f) hexapedal pop-up structures enabled by folding of the magnetically active 

segments surrounding the magnetically inactive segments. 
 

 
2.5 Support Inks for Printing Three-dimensional Structures 
 

Our method of printing ferromagnetic domains can be further extended to complex 3D 

structures. When printing 3D structures with direct ink writing, however, difficulties typically arise 

due to increasing structural instability as the deposited filaments are stacked up. To ensure a more 

stable printing process, we introduce support ink composed of a silicone resin containing catalyst 

and fumed silica nanoparticles (Fig. 2.14; see Fig. 2.3 for rheological properties). When printed, 

the support ink serves as a fugitive support that buttresses the adjacent magnetic ink (Fig. 2.13). 

After the magnetic ink is fully cured, the support ink can be removed by solvent rinses (Fig. 2.15). 

The use of support ink and the consequent ability to print 3D structures with programmed domains 

allow us to create a set of high-aspect-ratio multilayered structures that exhibit rapid and reversible 

transformation between complex 3D shapes under magnetic fields, which will be presented in the 

following section. 
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Fig. 2.13 | Printing of multilayered structures assisted by the use of support inks. Printing 

multilayered hexagonal arrays using magnetic and support inks. The use of support inks as fugitive 

buttresses enables stacking the deposited magnetic inks stably up to tens or even hundreds of layers. 

 
 

 
Fig. 2.14 | Chemical composition of magnetic and support inks. The higher concentration of 

catalyst in the support ink prevents diffusion of catalyst molecules through the interface and thus 

prevents imperfect curing of the adjacent magnetic inks. 
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Fig. 2.15 | Removal of support inks by solvent rinse after curing. The printed magnetic inks 

are cured by heating at 120 ºC for 1 hr. The support ink is then removed by solvent rinses. 

 

 

2.6 Various Designs of Three-dimensional Shape-morphing Structures 
 

In this section, we present a variety of fully 3D structures with programmed ferromagnetic 

domains, which are enabled by the use of support ink and the consequent ability to stack up the 

printed magnetic inks up to tens or even hundreds of layers. Fig. 2.16c shows a thin-walled 

structure consisting of two adjoining hexagonal tubes with high aspect ratios. The ferromagnetic 

domains are programmed in a way that some parts of the tubes expand while the others collapse, 

as illustrated in Fig. 2.16a, to create complex undulating surfaces in a continuous 3D structure 

under the applied magnetic field, as predicted and observed by the simulation and the experiment 

(Fig. 2.16 b and c), respectively. As another example to demonstrate the versatility of our 

fabrication method, we create a pyramid-shaped thin-walled structure that elongates along the 

direction of applied magnetic fields (Fig. 2.16 e and f) due to the programmed magnetic domains 

(Fig. 2.16d).  

 

 



 25 

 
 
Fig. 2.16 | Multilayered  3D structures with programmed ferromagnetic domains. Schematic 

designs, finite-element simulations, and experi-mental results of (a-c) two adjoining hexagonal 

tubes programmed to form undulating surfaces under external magnetic fields due to the 

alternating ferromagnetic domains and (d-f) a pyramid-shaped thin-walled structure exhibiting 

elongation in its diagonal direction along the applied external fields. 

 
 
The versatility of our model-guided design and fabrication method enables us to create 

mechanical metamaterials (Fig. 2.17, c, f, and i), so-called auxetic structures characterized by the 

negative Poisson’s ratios, which exhibit shrinkage in both length and width in response to external 

magnetic fields. Typically, mechanical metamaterials show auxetic behaviors only when 

uniaxially compressed or stretched and thus require direct mechanical contact (25). In addition, 

due to the limited fabrication techniques to achieve complex designs, remote actuation of 

untethered auxetic structures has not been realized by other types of active materials. Guided by 

our model-based predictions (Fig. 2.17, b, e, and f), we design a set of mechanical metamaterials 

with programmed ferromagnetic domains (Fig. 2.17, a, d, and g) that quickly shrink under the 

applied fields within 0.5 s and recover their original shapes upon removal of the applied fields (Fig. 

2.17, c, f, and i). The use of magnetic fields as an actuation method obviates the need for direct 

contact in realizing auxetic behaviors of mechanical metamaterials. 
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Fig. 2.17 | Untethered fast-transforming 3D auxetic structures with negative Poisson’s ratios.  

Schematic designs, finite-element analysis predictions, and experimental results of a set of auxetic 

structures with negative Poisson’s ratios exhibiting shrinkage in both length and width under 

external magnetic fields. 

 
 
All demonstrated 3D structures are printed with the elastomeric composite ink containing 

20 vol% of magnetized NdFeB particles using a nozzle with 410-µm diameter under the magnetic 

field of 50 mT at the nozzle tip generated by a permanent magnet. Actuation of the demonstrated 

structures is performed by applying magnetic fields of 200 mT perpendicular to the planes of the 

structures. The detailed dimensions of the printed structures are given in Fig. 2.18. 
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Fig. 2.18 | Schematic designs and dimensions of high-aspect-ratio multilayered structures.  (a) 

Two adjoining hexagonal tubes programmed to form undulating surfaces under external magnetic 

fields; (b) a pyramid-shaped thin-walled structure programmed to elongate in its diagonal direction 

along the applied external fields; and (c-e) a set of auxetic structures with negative Poisson’s ratios 

programmed to shrinkage in both length and width under external magnetic fields. 

 
 
2.7 Materials and Methods 
 
2.7.1  Ink Composition and Preparation 
 

 The magnetic ink was prepared first by blending two silicone-based materials - SE 1700 

(Dow Corning Corp.) and Ecoflex 00-30 Part B (Smooth-on Inc.) - in a 1:2 volume ratio. Ecoflex 

00-30 Part B, a softer elastomer than SE 1700, was used to achieve preferred mechanical properties 

of the composite material. Fumed silica nanoparticles (amorphous, 20-30 nm; US Research 

Nanomaterials Inc.), which corresponds to 12.5 wt% with respect to Ecoflex Part B, were added 

to achieve required rheological properties for direct ink writing. After mixing the blend in a 

planetary mixer (AR-100; Thinky) at 2,000 rpm for 2 min, 20 vol% NdFeB microparticles (287.5 

wt% with respect to Ecoflex Part B) with an average size of 5 µm (MQFP-B-2007609-089; 

Magnequench) were added into the elastomer mixture and then mixed thoroughly at 2,000 rpm for 
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3 min, followed by defoaming at 2,200 rpm for 1 min. The composite ink was then magnetized by 

impulse magnetic fields (~ 2.7 T) generated by an impulse magnetizer (IM-10-30; ASC Scientific) 

to impart magnetic polarities to the ferromagnetic particles embedded in the elastomer matrix. 

Both SE 1700 and Ecoflex 00-30 are platinum-catalyzed, addition-curing silicones; hence, 10 wt% 

SE 1700 Catalyst with respect to SE 1700 Base was added into the magnetized ink and then mixed 

at 2,000 rpm for 30 s before printing. The final concentrations of components were as follows: 

21.78 wt% Ecoflex 00-30 Part B, 2.72 wt% fumed silica nanoparticles, 11.71 wt% SE 1700 Base, 

1.17 wt% SE 1700 Catalyst, and 62.62 wt% NdFeB microparticles. For imaging purpose, ~ 2 wt% 

fluorescent colorants (Ignite PMS 805C; Smooth-on Inc.) were added to this final composition.  

  The support ink, which was used for supporting structures when printing 

multilayered or 3D structures with the magnetic ink, was prepared by mixing a platinum-based 

silicone-curing accelerator (Elastosil CAT PT-F; Wacker) with fumed silica nanoparticles 

(amorphous, 20-30 nm; US Research Nanomaterials, Inc.) in a 5.45:1 mass ratio. Fumed silica 

nanoparticles were added to achieve rheological properties required for direct ink writing of the 

support ink. The higher concentration of catalyst in the support ink prevents diffusion of catalyst 

molecules from the adjacent magnetic inks, and therefore helps prevent imperfect curing of the 

printed magnetic structures. After the magnetic inks were fully cured upon heating at 120 ºC for 1 

hr, the fugitive support ink was removed by rinsing with isopropyl alcohol using an orbital shaker 

(Micro Plate Shaker; VWR). 

 

2.7.2  Rheological Characterization 
 

Rheological responses (Fig. 2.3) of the magnetic and support inks were characterized using 

a rotational rheometer (AR-G2; TA Instruments) with a 20-mm-diameter steel plate geometry. For 

magnetic inks, both magnetized and nonmagnetized samples were tested to evaluate the effects of 

magnetic interaction between the embedded magnetized particles. Apparent viscosities were 

measured via steady state flow experiments with a sweep of shear rates (0.01-100 s-1). Shear 

storage moduli were measured as a function of shear stress via oscillation experiments at a fixed 

frequency of 1 Hz with a sweep of stress (10-10,000 Pa). The magnetic and support inks were 

equilibrated at 25 ºC for 1 min before testing, and all experiments were performed at 25 ºC with a 

gap height of 0.5 mm. 
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2.7.3  Magnetic Characterization 
 

The quality of alignment of the magnetic particles was evaluated by measuring magnetic 

moment density (magnetization) of the printed samples with a vibrating sample magnetometer 

(DMS 1660; ADE Technologies) as shown in Fig. 2.6a. To prepare specimens, a set of parallel 

lines was printed in the same direction to construct a rectangular film. Then, the printed film was 

cut into circles using a 6-mm biopsy punch (Miltex Inc.) to fit into the sample holder of the 

machine. Magnetic moments of the samples were measured against a sweep of external magnetic 

fields from -8,000 to 8,000 A/m. Remanent magnetization, which corresponds to the measured 

magnetic moment when the applied external field is zero, was divided by each specimen’s volume 

to obtain the magnetic moment density of the specimen. 

 

2.7.4  Mechanical Characterization 
 

The mechanical property of the printed elastomeric composite is required for model-based 

simulation, which will be discussed in the following chapter. For mechanical testing, two types of 

rectangular planar sheets (width: 12 mm; length: 35 mm) were printed with an 840-µm conical 

nozzle under no external magnetic field and PM-induced fields, respectively. After curing, the 

sheets were cut into dog-bone-shaped specimens with known dimensions (width: 4 mm; gauge 

length: 17 mm) for tensile testing. The cross-sectional area of each specimen was calculated by 

dividing the sample’s original volume by its length, where the volume was calculated based on the 

sample’s mass measured before the cut and the density (2.434 g/cm3) of the composite ink 

containing 20 vol% of NdFeB. The specimens were tested on a mechanical testing machine (Z2.5; 

Zwick/Roell) with a 20 N load cell at a strain rate of 0.01 s-1. Nominal stress-stretch curves were 

plotted for both materials, and shear moduli (G) were obtained by fitting the experimental curves 

using a neo-Hookean model (Fig. 2.19). The obtained shear modulus of the magnetized-ink-based 

material was G = 330 kPa. The specimen printed in the presence of external fields showed higher 

shear modulus compared with the specimen printed without external fields (G = 245 kPa). This 

higher shear modulus may be attributed to the field-induced alignment of ferromagnetic particles 

along the filaments when magnetic fields were applied during the printing.   
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Fig. 2.19 | Mechanical responses of printed magnetic inks after curing. Nominal stress-stretch 

curves (solid lines) were obtained from uniaxial tensile tests of specimens printed with the 

magnetic ink in the absence of external fields (black) and under applied magnetic fields of 50 mT 

(red) at the nozzle tip generated by a permanent magnet. The elastomer matrix with no magnetic 

particles included was also tested (blue). Shear modulus (G) of each material was obtained by 

fitting the experimental curves using a neo-Hookean model (dashed lines). 
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3. MODELING OF HARD-MAGNETIC SOFT MATERIALS 
 
3.1  Introduction 
 

In this chapter, we develop a model to predict the transformation of complex 3D-printed 

structures under magnetic fields due to the programmed ferromagnetic domains resulting from the 

embedded hard-magnetic particles. Application of magnetic fields induces torques on the particles, 

which create stresses that collectively lead to a macroscale material response.   

 

3.1.1  Magnetoactive Soft Materials 
 

Magnetoactive soft materials, or magnetorheological elastomers, are commonly composed 

of polymeric matrices incorporating magnetic particles, typically iron or alloy of iron (26-30). 

Under applied magnetic fields, the embedded magnetic particles interact with each another and 

with the elastomer matrices to rapidly and dramatically change the mechanical properties such as 

stiffness or the shape in controlled manners (31). The controlled variations of mechanical 

properties in magnetoactive soft materials have been used in applications such as vibration 

absorbers (27, 32, 33), and isolators (34, 35). On the other hand, the controlled shape changes of 

magnetoactive soft materials have been explored for applications such as untethered soft actuators 

(36-38), biomimetic pumps (39), and drug-delivery devices (5, 40).  

 

3.1.2  Soft-magnetic vs Hard-magnetic Materials 
 

 Despite their interesting properties and promising applications, existing magnetoactive soft 

materials have remained unable to create complex 3D shapes that might lead to complex functions 

for further realistic applications in many areas. One major limitation results from the fact that those 

existing magnetoactive materials are mostly based on soft-magnetic particles with low coercivity 

such as carbonyl iron or iron oxides (28, 41, 42), which develop strong magnetization when 

exposed to external magnetic fields but lose the induced magnetization quite easily when 

demagnetizing fields are applied. On the contrary, hard-magnetic materials such as NdFeB or 

SmCo (Samarium Cobalt) possess high coercivity, meaning that they can retain the remnant 

magnetization against relatively strong demagnetizing fields without significantly losing their 

magnetic polarities unlike the soft-magnetic materials.  
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 The different magnetic properties of soft-magnetic and hard-magnetic materials are well 

illustrated by magnetization curves presented in Fig. 3.1 below. These curves show the hysteretic 

magnetic properties of each type of materials when exposed to an external magnetic field . 

The magnetic hysteresis is one of the distinct properties of ferromagnetic materials. Other types of 

magnetic materials such as paramagnetic or diamagnetic materials exhibit no hysteretic properties. 

The M-H curves in Fig. 3.1a show how the magnetic moment densities of soft-magnetic and hard-

magnetic materials change as the external applied field varies. Ferromagnetic materials typically 

develop strong magnetization due to their high permeabilities. The magnetization approaches a 

constant values, called saturation magnetization, as the magnetizing field increases. Once saturated, 

ferromagnetic materials maintain a remnant or residual magnetization, , even when the 

external applied fields are removed, which is the source of permanent magnetic polarities. The 

field strength at which the magnetization becomes zero is called intrinsic coercivity . The field 

strength at which the magnetic flux density, denoted as B in Fig. 3.1b, becomes zero is called 

coercivity or coercive force .  

 
 
 

 
Fig. 3.1 | Magnetization characteristics of soft-magnetic and hard-magnetic materials. (a) 

Magnetization and (b) magnetic induction (flux density) developed in materials plotted against the 

applied external field.  

Happlied

Mr

Hci
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For the proposed fabrication method introduced in Chapter 2 to work, the embedded 

ferromagnetic particles should be able to possess permanent magnetic polarities by retaining 

residual magnetization. Not only that, the embedded ferromagnetic materials should also possess 

coercivity high enough to resist demagnetization under external magnetic fields for actuation. 

When soft-magnetic materials are used, the programmed domains would be easily reverted by the 

applied actuation fields, which makes it difficult to achieve desired shapes in a controllable manner. 

For these reasons, hard-magnetic materials are preferred in our proposed fabrication method.    

 
 
3.1.3  Model-guided Design of Complex Shape-morphing Structures 
 
 To design complex programmed shapes, thereby achieving functionally useful shape-

morphing structures, the capability to quantitatively predict the programmed transformation is 

indispensable. For such a capability, a model based on constitutive relations to describe the phy-

sical behaviors of our materials is required. The capability to quantitatively predict how a designed 

structure will transform in response to different actuation fields enables designing multiple modes 

of programmed shape changes as shown in Fig. 3.2. Moreover, when guided by such model-based 

simulations, we can  design previously inaccessible modes of transformation such as remotely 

controlled 3D auxetic behaviors, as already shown in the previous chapter.  

 

 
Fig. 3.2 | Model-guided design of printed shape-morphing structures. The model-based 

simulation can guide the design of complex shape-morphing structures based on the capability to 

predict multiple modes of transformation depending on the applied field directions. 
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3.2  Basic Equations 
 
3.2.1  Kinematics 
 
 To discuss the basic kinematic relations, we first need to consider a deformable solid in a 

reference, undeformed state with material points specified by their position vectors . In a 

deformed state, the material points  occupies the position , where denotes 

the motion of the body that maps the material points  into . The deformation gradient tensor 

 is defined by 

   (3.1) 
 
where Grad denotes the gradient operator with respect to  with  denoting the volu-

metric Jacobian. The Cauchy stress tensor (the true stress tensor) and the Piola stress tensor (the 

nominal stress tensor) are denoted as  and , respectively, whose relation is expressed as 
 

    or  . (3.2) 
 
It should be noted that the stress tensors are the total stresses, which account for the both stress 

components: one from pure mechanical deformation and the other induced by magnetic fields in 

magnetoactive materials. 

 In what follows, we will express the magnetic field vector and the magnetic flux density 

vector in the material in the current configuration as  and , respectively. Correspondingly, the 

magnetic field vector and the magnetic flux density vector in the reference configuration will be 

denoted as  and , respectively. Then, the relation between  and  can be expressed as 

 
    or  . (3.3) 
 
Likewise, the relation between  and  can be expressed as 

 
    or  . (3.4) 
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3.2.2  Equilibrium Equations 
 
 The conservation of mass for our continuum material requires the following relation to be 

satisfied: 

    or  , (3.5) 
 
where  is the mass density of the material in the current configuration and  is the mass density 

of the material in the reference configuration.  

 Since we are interested in the shape changes of our printed structures under the applied 

magnetic fields, but not in the dynamics or time-varying shapes affected by inertial effects, we can 

safely assume that the accelerations of all material points are zero. Then, the equilibrium equation 

in the current configuration can be written in the following form:  
 
  , (3.6) 
 
where  denotes the divergence of  with respect to , and  denotes the body force per unit 

volume of the material in the current configuration. Correspondingly, the equilibrium equation in 

the reference configuration can be written in the following form: 
 

  , (3.7) 
 
where  denotes the divergence of  with respect to , and  denotes the body force per 

unit volume of the material in the reference configuration. It should be noted that the body force 

here account for the gravitational force but not the magnetic force; the effect from magnetic 

interactions are considered in the stress tensors, which will be discussed in the following section. 

The relation between the body forces in the reference and current configurations is expressed as 
 

   or  . (3.8) 
 
 Given that the free current and time-varying electric displacement are zero in our system, 

the Maxwell’s equations in the current configuration can expressed as  

 
  , (3.9a) 

  , (3.9b) 
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where  denotes the divergence of  with respect to , and  denotes the curl of  

with respect to . Correspondingly, the Maxwell’s equations in the reference configuration can 

be expressed as 

  , (3.10a) 

  , (3.10b) 

 
where  denotes the divergence of  with respect to , and  denotes the curl of 

with respect to . 

 
 
3.2.3  Boundary Conditions 
 
 The mechanical boundary condition in the current configuration can be expressed as  

 
  , (3.11) 

 
where  indicates a discontinuity of variable of interest across the surface, and  denotes the 

outward unit normal vector with respect to the surface in the current configuration. Correspon-

dingly, the mechanical boundary condition in the reference configuration can be expressed as  

 
  , (3.12) 

 
where  is the unit normal vector with respect to the surface in the reference configuration.  

 Given that the free current and the time-varying electric displacement is zero in the system, 

the magnetic boundary conditions in the current configuration can be expressed as 

 
  , (3.13a) 

  , (3.13b) 

 
where  denotes the cross product of two vectors. Correspondingly, the magnetic boundary 

conditions in the reference configuration can be expressed as  

 

divB B x curlH H

x

Div !B = 0

Curl !H = 0

Div !B !B X Curl !H !H

X

[ ] =σ n 0

  ⎡⎣ ⎤⎦ n

P⎡⎣ ⎤⎦N = 0

N

n ⋅ B⎡⎣ ⎤⎦ = 0

n× H⎡⎣ ⎤⎦ = 0

×



 37 

  , (3.14a) 

  . (3.14b) 

 

 

3.3  Constitutive Modeling 
 
3.3.1  General Form of the Constitutive Relations 
  
 As discussed earlier, ferromagnetic materials can possess remnant magnetization once the 

materials are magnetized to saturation. This quantity corresponds to the magnetization that 

remains in the ferromagnetic material even after the applied external field is removed, creating 

permanent magnetic polarities of the material. In the current configuration, the residual magnetic 

flux density resulting from the remnant magnetization is defined as  

 
   . (3.15) 

 
Correspondingly, the residual magnetic flux density in the reference configuration is defined as 

 
   . (3.16) 

 
Then, from Eq. (3.4), the relation between  and  can be expressed as 

 

    or  . (3.17) 
 
 Following the convention in nonlinear elasticity and thermodynamics, we will define the 

constitutive model for our hard-magnetic soft materials based on the Helmholtz free energy 

function, , which denotes the Helmholtz free energy per unit volume of the material in the 

reference configuration. The Helmholtz free energy function   is considered as a function of 

two independent variables — the deformation gradient and the magnetic flux density  — with 

one state variable  which denotes the residual magnetic flux density in the reference 

configuration. In a mathematical expression, this statement can be written as . From the 

energy balance and work-conjugate relationship (readers may consult (43) for detailed derivations) 
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for hyperelastic materials, we can arrive the following expressions that relate the Piola stress and 

the magnetic field vector, both expressed in the current configuration, with the Helmholtz free 

energy, the deformation gradient, and the magnetic flux density:  

 

  ,  (3.18a) 

  . (3.18b) 

 
Substituting the above equations to Eqs. (3.2) and (3.3) further leads to the following expressions 

in terms of both variables written in the reference configuration: 

   

  , (3.19a) 

  . (3.19b) 

 
Application of magnetic fields to our hard-magnetic soft materials induces torques on the 

embedded ferromagnetic particles, making them reoriented towards the applied external field. 

These magnetic torques create internal stresses that collectively lead to a macroscale material 

response, causing the whole structure to transform into a configuration that minimizes the 

combined magnetic and elastic potential energy of the system. This discussion will be further 

elaborated in the following sections. 

 

 

3.3.2  Ideal Hard-magnetic Soft Materials 
 

 The Helmholtz free energy can be divided into two parts: i) the elastic part , also 

called as strain energy density which is a function of the deformation gradient only, and ii) the 

magnetic part , or magnetic potential energy density, as a function of both the 

deformation gradient  and the nominal magnetic flux density  with the state variable . The 
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elastic part can be one of the following models which are most commonly used to describe 

constitutive laws for soft materials: neo-Hookean, Gent (44), and Arruda-Boyce (45) models. 

 To describe the magnetic part of the Helmholtz free energy, we propose a model called 

ideal hard-magnetic soft material which is depicted in Fig. 3.3. This model assumes that, in a 

hard-magnetic soft material in the current configuration, the magnetic field  is linearly related 

to the magnetic flux density induced by the magnetic field  by a constant permeability over 

a certain range within which the applied magnetic field strength is lower than the coercivity of the 

embedded ferromagnetic materials. When the applied magnetic field approaches or exceeds the 

coercivity , however, which means outside the working range beyond which the linear relation-

ship is no longer valid, the  curve becomes nonlinear and follows the hysteresis loop 

illustrated in Fig. 3.3a Considering the fact that the required field strength to actuate our printed 

structures based on elastomer matrix incorporating NdFeB particles, i.e. 200 mT which corres-

ponds to 160 kA/m, is far lower than the coercivity of the NdFeB particles, which is 490 kA/m, it 

is reasonable to assume that the aforementioned linear relationship holds true for our model 

described in Fig. 3.3b.  

 The reasoning behind such a linear approximation comes from the fact that the permeability 

of ferromagnetic materials after being saturated is close to that of the surrounding media. In our 

case of considering an elastomer matrix with embedded hard-magnetic particles, we can further 

point out the fact that the permeability of silicone rubber is almost the same as vacuum 

permeability which is often denoted as . Such reasoning leads to a conclusion that the 

permeability of our hard-magnetic soft materials can be approximated as the vacuum permeability 

 provided that the materials are fully magnetized to saturation during the ink preparation. In a 

mathematical expression, this linear constitutive model can be written as 
 

  . (3.20a) 

 
This expression is valid for the sample’s residual induction  aligned with the applied external 

field H. It should be noted, however, that this linear relation holds true even when the printed 

sample’s residual induction  is not in line with the applied external field .When the residual 
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induction vector  is decomposed into components along ( ) and perpendicular ( ) to the 

applied field direction, the aforementioned linear relation needs to be modified as the following 

form:   

  . (3.20b) 

 
It is worth noting that this relation also implies the statement that the remnant magnetization  

and thus the residual induction  can be considered to be independent of the applied external 

field as long as the field strength does not exceed the limit of coercivity.   

 

 

 
 

Fig. 3.3 | Ideal hard-magnetic soft materials characterized by a linear B-H relationship. (a) 

A hysteresis loop of typical hard-magnetic materials. (b) The linear relationship between B and H 

within the actuation field range below the coercivity . In the model of ideal hard-magnetic soft 

materials, this linear relationship is assumed to hold true even when the residual induction is 

not aligned with the applied external field H; only the offset  at which the B-H curve meets the 

y-axis varies depending on the angle  between  and H while the linear relation is maintained.  
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3.3.3  Specific Form of the Constitutive Relations 
 
 The fact that our hard-magnetic soft materials, when magnetically saturated, have the 

permeability almost the same as the vacuum permeability has an important implication necessary 

to evaluate the magnetic potential energy, from which we will obtain the magnetic Cauchy stress 

tensors. Since the whole material composed of an elastomer matrix with embedded hard-magnetic 

particles is considered to have the vacuum permeability, we can safely assume that the presence 

of our hard-magnetic soft materials will not significantly alter the applied magnetic field. Then, 

when a uniform magnetic field  is applied to the hard-magnetic soft material with remnant 

magnetization , the magnetic potential energy per unit volume in the current state can 

be expressed as 

  , (3.21) 

 
when neglecting the higher order terms.  Then, given that and Eq. (3.17), the 

magnetic potential energy in the reference configuration can be expressed as 

 

  . (3.22) 

 
Assuming the generalized neo-Hookean solid for our elastomeric composite material, the 

strain energy density, or the elastic potential energy per unit volume of the reference (undeformed) 

body can be expressed as 
 

       (3.23) 

 
where G and K are the material’s shear modulus and bulk modulus, respectively, and  is the first 

principal invariant defined as   with F representing the deformation gradient tensor, 

which characterizes local length changes in the elastic body. The quantity J, the volumetric 

Jacobian of the deformation, is defined as  and characterizes the local volume changes. 

For incompressible solid, the deformation must satisfy  to preserve volume. It should be 

noted that, as discussed earlier, the specific form of this elastic part of the Helmholtz free energy 
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can be other models such as Gent or Arruda-Boyce. In this thesis, given that the maximum strain 

level is modest, and hence, that the chain-locking or stiffening behavior can be neglected, the neo-

Hookean model would provide sufficient accuracy in terms of predicting the final shape, especially 

when considering the fact that the mechanical testing results are fitted well with this simple model.     

 The combined Helmholtz free energy of the our hard-magnetic soft material can then be 

expressed as 

  . (3.24) 

 
From the general constitutive relations in Eqs. (3.18) and (3.19), we derive can obtain the elastic 

Piola and Cauchy stresses as 

 ,                            (3.25a) 

                 (3.25b) 

 
respectively, where I denotes the identity tensor. Likewise, the magnetic Piola and Cauchy stresses 

can be calculated as 

,                                             (3.26a) 

          (3.26b) 

 
respectively, where the operator  denotes the dyadic product, which takes two vectors to yield 

a second order tensor. The magnetic Cauchy stress can be further expressed in terms of true 

(instead of nominal) quantities as  

           (3.27) 

 
Finally, we obtain the total Cauchy stress tensor as  
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Since  and  are given, the Cauchy stress tensor  is a function of the deformation 

gradient only. By substituting the Cauchy stress tensor into the equilibrium equation Eq. (3.6), 

one can calculate the deformation gradient  in the hard-magnetic soft material.  

 
 
3.4  Scaling Analysis of Simple Magnetic Actuation 
 

For quantitative understanding of the effects of physical parameters on the magnetic 

actuation of our printed samples, we analyze the bending of a beam with a uniform magnetic 

domain under applied field. Let us consider a rectangular beam with one end clamped as depicted 

in Fig. 3.4. The length, thickness, and width of the beam are denoted as L, H, and W, respectively, 

and the cross-sectional area and the volume of the beam are denoted as A and V, respectively. The 

beam is considered to have uniform magnetization of magnitude M along the axial direction and 

is subject to a uniform field of strength B, which is being applied perpendicularly to the beam.  

Assuming a small deflection of the beam, the curvature of the deformed beam can be 

expressed as 

                                                         (3.29) 

 
where E denotes the Young’s modulus of the beam. For incompressible material, E can be 

calculated from the material’s shear modulus , which gives . The area moment of inertia 

I is defined as . In addition, the torque density dτ, which is induced by the applied 

magnetic field, can be calculated as . Thereafter, the torque applied at a 

distance x from the fixed end can be calculated as 
 

.                                                   (3.30) 

 

From Eq. (3.29), the curvature can then be expressed as a function of x as 
 

.                                                   (3.31) 
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From this equation, we can notice that the maximum curvature, which occurs at the base ( ), 

scales as  

.                                                        (3.32) 

 

We can infer from this expression that there are a number of strategies to achieve effective 

actuation that yields large curvature. A more straightforward approach is to increase either the 

magnetization strength M or the actuation field B. The magnetization strength can be increased by 

either increasing the volume fraction of ferromagnetic microparticles or by increasing the applied 

field strength during the printing process to achieve better quality of alignment. Another strategy 

is to increase the length-to-area ratio ( ) by printing more slender fibers to construct a shape-

morphing structure. The last strategy is to reduce the material’s shear modulus G, which can be 

achieved by reducing the crosslinking density of the elastomer matrix of the composite ink. 

 

 

 
Fig. 3.4 | A schematic model for scaling analysis of magnetic actuation of a simple beam. The 

length, thickness, and width of the beam are denoted as L, H, and W, respectively, and the cross-

sectional area and the volume of the beam are denoted as A and V, respectively. The beam is 

considered to have uniform magnetization of magnitude M along the axial direction and is subject 

to a uniform external field of strength B, which is being applied perpendicularly to the beam. 
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3.5  Validation of the Computational Model 
 
3.5.1  Simulation Results vs Analytical Solutions 

 
The constitutive relation in Eq. (3.28), which is developed to compute the magnetic-stress-

induced deformation, is implemented as a user-defined element (UEL) subroutine in the 

commercial FEA software ABAQUS for model-based simulation. For validation of the 

implemented model, the following two simple cases are considered: when the applied external 

field  is 1) parallel and 2) perpendicular to the magnetization  possessed by the solid 

body. For case 1), the UEL-based simulation results were obtained in terms of stretch λ and 

compared with analytical values calculated from the constitutive relation in Eq. (3.28). For case 

2), beams in bending (for small deflections) due to the magnetic torques were considered and the 

UEL-based simulation results were obtained in terms of beam deflections at given  and 

. These values were compared with the calculated deflection values under mechanical loads 

that create bending moments equivalent to the magnetic torques. 

 

1) When  is parallel with  

Assume that both  and  are aligned with the 1-direction in the reference confi-

guration. When  and  are parallel, the magnetic interaction results in uniaxial loading, 

which is described by the deformation gradient tensor in the form of  

 

              (3.33) 

 

where λ denotes the stretch along the loading direction. The elastic term of the Cauchy stress along 

the uniaxial loading direction can be calculated from Eq. (3.25b) as  

 

               (3.34) 
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while the other terms satisfy  due to the traction-free condition on the lateral 

sides. From Eq. (3.26b), the magnetic Cauchy stress term in the deformed body is calculated as 
 

            (3.35) 

 
To reach equilibrium, this magnetic Cauchy stress should be balanced by the elastic stress term. 

Given that the elastomeric material of interest can be regarded as incompressible solid, which 

satisfies , we can then obtain a following dimensionless quantity by balancing Eqs. (3.33) 

and (3.35) as 

.                       (3.36) 

   
The dimensionless quantity  as a function of the stretch  is plotted as a 

solid line in Fig. 3.5a. The case when  corresponds to the undeformed 

reference configuration in which no magnetic interaction is involved. When  and  are in 

the same direction ( ), the magnetic stress term contributes to a uniaxial 

elongation of the body ( ) along the direction of the applied external field. When  and 

 are in the opposite direction, a compressive stress develops, causing the body to shrink ( ) 

along the applied field direction. The finite element simulation results obtained for several values 

of  are plotted as red circles in Fig. 3.5a. These simulation results faithfully follow 

the analytical prediction (black line) given in Eq. (3.36), validating that the implemented model is 

working correctly in the case of parallel  and .  

 

2) When  is perpendicular to  

To validate the UEL-based simulation results when  is being applied perpendi-

cularly to , a simple case of beam bending with small deflection is evaluated. More specifically, 

a slender, incompressible solid beam (length L) with a rectangular cross section (width W and 

height ), whose one end is rigidly fixed, is considered to have uniform magnetization 
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 along the axial 1-direction  under a uniform external field  along the 2-direction that is 

perpendicular to the beam (Fig. 3.4). The magnetic torque induces a small deflection of the beam 

as the embedded magnetic dipoles in line with  attempt to align themselves with the applied 

 field. In the reference configuration, namely , the only non-zero term of the magnetic 

Cauchy stress in the incompressible body is calculated as   from Eq. 

(3.26b). This shear stress gives rise to the magnetic torque  across the entire 

beam.  

Now, let us consider a point load P acting on the free end of the beam in the reference 

configuration. The point load required to produce an equivalent bending moment as can be 

calculated as . Then, the deflection of the free end of the beam, or the 

maximal deflection  , under the point load P can be expressed in a dimensionless form as  

 

,                    (3.37) 

 
for small deflections ( ), which forms a linear relation with the dimensionless 

quantity  as plotted as a black line in Fig. 3.5b. For some prescribed values of this 

dimensionless quantity, the deflection values were obtained from the simulation based on finite-

element model and plotted as red squares in Fig. 3.5b. The two results show good agreement, 

suggesting that the implemented model is working correctly in the case when  and  are 

orthogonal. 
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Fig. 3.5 | Comparison of the simulations results with analytical solutions. (a) Comparison of 

magnetic-stress-induced stretch λ as a function of dimensionless quantity , when 

external magnetic field  is parallel with the residual induc-tion  (b) Comparison of small 

deflections at the free end of a slender beam when is applied perpendicularly to  in order 

to create magnetic-torque-induced bending.   

 
 
3.5.2  Experimental Validation 
 

In Chapter 2, we have already discussed a variety of printed structures with designed 

ferromagnetic domains and thus programmed shape changes.  From the very illustrative 1D 

example to complex 3D shapes, we compared the experimental results with the simulation results 

that were obtained from our finite-element model discussed throughout this chapter. All of the 

examples presented in Figs. 2.5, 2.9-11, and 2.16-17 showed good agreement between the 

experimental and simulation results, which validates the developed computational model. As a 

summary, we choose some complex 2D and 3D shapes and compare their experimental and 

simulation results by overlaying the two images as shown in Fig. 3.6.   

The overlaid images show that the final deformed shapes of the presented structures are 

very close to the shapes predicted by the finite element simulation. We reason that the slight 

difference between the experimental and simulation results of the hollow cross structure shown in 

Fig. 3.6a is attributed to the fact that the experiment was performed under a non-uniform field 
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Bapplied rB!
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generated by a single permanent magnet due to the limited size of the available electromagnet. 

However, the simulation assumed a uniform magnetic field for actuation of the hollow cross 

structure. Application of such a gradient magnetic field might have contributed to an attractive 

magnetic force acting on the printed structure, thereby resulting a slightly less prominent shape 

when compared with what predicted by the finite element simulation. However, given that other 

overlaid images show very good agreement, we can conclude the our computational model is valid 

and accurate enough to guide the design of complex shape morphing structures based on our 3D 

printing platform capable of programming ferromagnetic domains in soft materials. 

 

 
 
Fig. 3.6 | Experimental validation of finite-element simulations of  2D and 3D structures. All 

demonstrated structures were printed with the magnetic ink containing 20 vol% of NdFeB particles 

through a nozzle with diameter of 410 µm under the applied field of 50 mT at the nozzle tip 

generated by a permanent magnet. Magnetic actuation was performed by applying external fields 

of 200 mT generated by a permanent magnet for (a) and (d) and by a pair of electromagnets for (c) 

and (d). 
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4. APPLICATIONS OF PRINTED MAGNETIC SHAPE SHIFTERS  
 
4.1  Actuation Performance of Printed Shape-shifting Structures 
 

In the design and fabrication of shape-programmable soft materials, intensive efforts have 

been made to increase the level of complexity by adopting 3D printing techniques such as inkjet 

printing (46), stereolithography (47, 48), and direct ink writing (49). However, fast and fully 

reversible actuation between programmed shapes has remained a central challenge in the field. To 

quantitatively evaluate the actuation performance, we compare the energy density and the 

actuation rate of printed shape-programmable materials in the literature. We also compare the 

power density, which is one of the most widely used metric to evaluate the actuation performance 

of active materials. The comparison shows that both the energy and power densities of our printed 

soft materials with programmed ferromagnetic domains are orders of magnitude higher than those 

of other existing 3D-printed soft active materials.  

 

4.1.1  Energy and Power Densities 
 

In an undeformed state, where no deformation exists, the elastic potential energy of the 

structure is minimum. When an external magnetic field is applied, for example, perpendicularly to 

the magnetic domains, the magnetic potential energy is maximum at the instant. When neglecting 

the hysteretic energy dissipation that results from the Mullin’s effect (50), which is commonly 

observed in elastomers filled with particulate materials, the magnetic potential energy is converted 

to elastic potential energy as the structure deforms. In the final state, as a result, the magnetic 

potential energy is minimum while the elastic potential energy is maximum, but the total combined 

potential energy should be minimum because it is energetically preferable. In what follows, we 

will see that this qualitative argument is more or less a true statement supported by quantitative 

measurements and calculations as well. 

Although the exact value of the elastic potential energy should be obtained from stress-

strain, which is not perfectly linear, the elastic potential energy per unit volume, ,  can 

be approximated under the assumptions of linear elasticity and incompressibility as 
  

   (4.1) 

ρE  [J/m3]

ρE !
3
2
Gεa
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where G [Pa] is the shear modulus of the composite material, and  is the actuation strain 

developed in the deformed state under the applied magnetic fields. On the other hand, the magnetic 

potential energy density, , can be approximated as  

 
   (4.2) 

 
where M and B denotes the magnetization value and the applied field strength, respectively. It 

should be noted that this expression is valid when the external magnetic field B is applied 

perpendicularly to the magnetization vector M of the printed structure.  

The energy density is the quantity that denotes the amount of energy stored in the material 

due to its elasticity upon deformation as a result of the mechanical work done on the material. 

Then, the power density, , which is essentially the amount of mechanical power extracted from 

the actuation of the material, can be obtained simply by multiplying the actuation rate or frequency 

f [Hz] to the energy density. Our shape-morphing structures discussed in Chapter 2 deform up to 

strain levels from 0.15 to 0.25. Given that the shear modulus measured from mechanical testing is 

G = 330 kPa, the elastic potential energy density is ranging from 11.13 to 30.93 kJ/m3. Also, given 

that the measured magnetization value is 78 kA/m and the actuation field strength is 200 to 400 

mT, the calculated magnetic potential energy density is ranging from 15.6 to 31.2 kJ/m3. 

Considering the fact that the calculated elastic and magnetic potential energy densities are close to 

each other, we can deduce that the previous qualitative argument at the beginning of this section 

is valid. Given that our shape-morphing structures deform into final states within 0.1 to 0.5 s, the 

calculated power density is ranging from 22.3 to 309.3 kW/m3.  

 

4.1.2  Comparison with Existing 3D-printed Soft Active Materials 
 
In this section, we compare the actuation performance of our printed structures, which is 

evaluated by the energy and power densities discussed in the previous section, with those of 

existing 3D-printed soft active materials based on shape memory polymers, liquid crystal 

elastomers, swelling hydrogels, and so on. The energy density and actuation rate are compared in 

Fig. 4.1a, and the power density is compared in Fig. 4.1b. which are orders of magnitude greater 

than the actuation rates and power densities achieved by existing 3D-printed shape-transforming 

soft materials. PBMA(48) PNIPAAM (47)  PNI PAAM-Cellulose (49) tango (46, 51 ) P LA(52 ) PH EMA (53) PNIPAAM -Alginate (54 ) RM82 (55, 56 ) GO (57 )  
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Fig. 4.1 | Actuation performance of 3D-printed shape-programmable soft materials. (a) 

Energy density and actuation rate of our magnetically responsive structures presented in Chapter 

2 are plotted and compared with those of existing 3D-printed shape-programmable soft materials 

in the literature. (b) Power density is calculated as energy density multiplied by the actuation rate 

of each material and plotted for comparison; the materials are listed in order of increasing power 

densities. PNIPAAm = poly(N-isopropylacrylamide); PMBA = poly(benzyl methacrylate); 

PHEMA = poly(hydroxyl ethyl methacrylate); PLA = poly(lactic acid);    RM82 =1,4-bis-[4-(6-

acryloyloxhexyloxy)benzoyloxy]-2-methylbenzene. 
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4.2  Functions and Applications from Programmed Shape Changes 
 
4.2.1  Reconfigurable Soft Electronics 
 

The capability to create complex shape changes allows us to achieve diverse functions from 

our printed structures. First, by combining electronic components and circuitry with our annular 

ring structure in Fig. 2.9c, we print a soft electronic device as detailed in Fig. 4.2 below. This soft 

electronic device deforms into two different shapes depending on the direction of applied magnetic 

fields of 30 mT, and each mode of transformation yields a different electronic function (Fig. 4.3a 

and b): red micro-LEDs lit up in Mode 1 and green micro-LEDs lit up in Mode 2. This results 

demonstrate that our multimaterial 3D printing method could be used to design and fabricate 

functionally reconfigurable soft electronic devices, whose rigid-material counterparts have 

recently been achieved by means of multistable buckling (58). Fig. 4.3c shows a schematic 

diagram of the embedded soft electronic circuits, which are designed to turn active only in the 

designated mode of transformation due to the selective contact with the gold electrode on the 

substrate.  

 

 

 
 
Fig. 4.2 | Exploded and bottom views of the reconfigurable soft electronic device. Soft 

electronic circuitry and components are embedded by means of a hybrid fabrication process based 

on multimaterial 3D printing.  
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Fig. 4.3 | Demonstration and mechanism of the reconfigurable soft electronic device. (a, b) 

Two different shapes depending on the direction of applied magnetic fields of 30 mT, which yield 

different electronic functions (red micro-LEDs lit up in Mode 1 and green micro-LEDs lit up in 

Mode 2). (c) Schematic diagram of the embedded soft electronic circuits, which are designed to 

turn active only in the designated mode of transformation due to the selective contact with the 

golden electrode substrate. 
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4.2.2  Interaction with Fast-moving Objects 
 
We further demonstrate the capability of interacting with an object based on the complex 

shape changes of the hexapedal structure shown in Fig. 2.11i. Using the fast response upon 

magnetic actuation, the hexapedal structure quickly stops a fast-moving object (Fig. 4.4c). When 

applying a magnetic field in the opposite direction to create a reversed shape (Fig. 3.1), the 

hexapedal structure can catch a falling object (Fig. 4.4a), hold it against external disturbance, and 

release the object on demand by using the previous mode of transformation (Fig. 4.4b). These 

series of tasks demonstrate that the printed shape-morphing structure is strong and agile enough to 

catch, hold, and lift the glass ball (with diameter of 18 mm and weight of 8 g), which is 10 times 

heavier than the hexapedal structure. These functional demonstrations suggest many new 

possibilities and applications in areas of soft robotics, especially where such untethered fast 

response and interaction with external objects are required.  

 

4.2.3  Rolling-based Locomotion and Delivery of Drug Pills 
 

Moreover, owing to the intricate patterns of ferromagnetic domains, which are enabled by 

the flexible fabrication method based on 3D printing, more complex behaviors can be created and 

thus more sophisticated functions can be derived from such complex shape changes. The 

hexapedal structure wraps its body and rotates along a horizontal axis under a rotating magnetic 

field (200 mT) generated by a permanent magnet. This coupled motion creates rolling-based 

locomotion, which allows the hexapedal structure to move forward and backward depending on 

the rolling direction as shown in Fig. 4.5. Harnessing the shape changes and motion, the hexapedal 

structure can carry an object with arbitrary shape such as a round (Fig. 4.6a) or oblong drug pill 

(Fig. 4.6b) and release the drug pill on demand as shown in Fig. 4.6. All such functions can be 

achieved by remotely controlling the applied magnetic fields without the need of direct mechanical 

contact. These demonstrations, along with the demonstrations above,  show that a single structure 

encoded with intricate patterns of ferromagnetic domains can exhibit multiple modes of 

transformation depending on the applied field direction and strength, further implying many new 

possibilities in magnetically controlled and actuated soft robotic applications.  
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Fig. 4.4 | Demonstration of multiple functions of the printed hexapedal structure. (a) The 

hexapedal structure catching a glass ball (diameter 18 mm; weight 8 g) off the center using its 

second mode of transformation upon application of a magnetic field (200 mT) generated by a 

permanent magnet. (b) After catching the ball, the hexapedal structure holds the object against 

physical disturbance and releases the ball using the first mode of transformation. (c) The hexapedal 

structure can also stop a fast-moving glass ball. 
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Fig. 4.5 | Demonstration of rolling-based locomotion of the printed hexapedal structure. The 

hexapedal structure wraps its body and rotates along a horizontal axis under a rotating magnetic 

field, moving forward and backward depending on the rolling direction. 

 

 
Fig. 4.6 | Rolling-based delivery of a pharmaceutical dose. (a) An oblong and (b) a round drug 

pill is carried by the hexapedal structure which wraps up the object and rolls forward under the 

applied rotating magnetic fields.  
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4.2.4  Horizontal Leap of 3D Auxetic Structure  
 

The 3D mechanical metamaterial presented in Fig. 2.16c can show a horizontal leap based 

on the drastic release of the elastic and magnetic potential energy (Fig. 4.7). The fast response of 

the auxetic structure generates an average speed of 250 mm/s during the leap, allowing it to move 

forward by 120 mm within 0.7 seconds on the horizontal plane. This leaping motion is achieved 

by first applying a magnetic field in one direction to collapse the auxetic structure and then 

switching to a field in the opposite direction while attenuating the field strength. This sudden 

reversal of the field direction quickly increases the magnetic potential energy and triggers the 

drastic release of the stored elastic and magnetic potential energy, which is converted to kinetic 

energy during the horizontal leap. The detailed information on applying the magnetic fields for 

actuation is given in Fig. 4.8.      

 

 
 
Fig. 4.7 | Horizontal leap of a 3D auxetic structure. The 3D auxetic structure shows leaping 

motion upon sudden reversal of the applied magnetic field direction while attenuating the strength 

by rotating a permanent magnet by 90 degrees.  
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Fig. 4.8 | Methods of applying magnetic fields to actuate the printed structures. The magnetic 

fields for actuating the printed structures can be applied in two ways. (a) A pair of electromagnetic 

coils are used to generate a uniform magnetic field. (b) A NdFeB magnet (width: 2 inch; length: 3 

inch; thickness: 0.5 inch; surface flux density: 300 mT) is used to create spatially varying magnetic 

fields for dynamic actuation by combining vertical, horizontal and rotational movements of the 

magnet. 
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5. CONCLUSIONS 
This thesis aimed to deliver a detailed information about the mechanism, modeling, and 

applications of the proposed method of printing ferromagnetic domains in soft materials. In 

Chapter 2, we discussed a various examples of 2D and 3D structures which exhibit fast and fully 

reversible transformation into complex programmed shapes upon application of magnetic fields. 

We also discussed the key parameters in the printing process that were identified by experimental 

characterizations and analytical interpretations.  

In Chapter 3, we developed a mathematical model based on a continuum mechanics 

framework, which enabled us to quantitatively predict the complex programed shape changes 

resulting from the magnetic-torque-induced deformation. We also validated our developed model 

by comparing the simulation results with analytical solutions for simplified problems and also with 

experimental results for all of the demonstrated printed samples. The nice agreement between the 

simulation and experimental results verified that our developed model was valid and accurate 

enough to be able to guide the design of complex shape morphing structures produced by our 

proposed fabrication method.  

In Chapter 4, we quantitatively evaluated the actuation performance of our printed shape-

morphing structures including the energy density and the power density, which were orders of 

magnitude higher than those of existing 3D-printed active materials based on hydrogels, shape 

memory polymers, and liquid crystal elastomers. We also demonstrated diverse functions derived 

from multiple modes of transformation depending on the direction and strength of the applied 

actuation fields. From the series of functional demonstrations, we could conclude that our printed 

shape-shifting structures were strong and agile enough to be able to interact with fast-moving 

objects or environments via magnetic actuation, suggesting many new possibilities in the field of 

magnetically actuated and controlled soft robots.  

Our printing method as a fabrication platform can be extended to multiple composite inks 

using different types of elastomer and hydrogel matrices and magnetic particles. The proposed 

method of printing ferromagnetic domains in soft materials introduces new design parameters 

including the domain patterns, magnetization strength, and actuation fields into the design and 

fabrication of shape-programmable soft materials. The remote actuation of such untethered, 

complex, and fast shape-shifting soft materials based on magnetic fields suggests new possibilities 

for applications in flexible electronics, biomedical devices, soft robotics, and so on.  
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