Development of a Variable Geometry Pillow Assisting Neck Extension Movement for Patients with Cervical Disc Herniation


We suggest a novel design of an apparatus which is conducive to rehabilitation of cervical spine disorder such as intervertebral disc herniation. Many researchers reported that McKenzie extension has a positive effect on rehabilitation of cervical disc herniation through clinical trials [1-3]. To enlarge this healing effect, an apparatus that helps patients doing McKenzie extension is needed. In this paper, we present a variable geometry pillow which enables a patient to do the cervical extension in supine position by periodically adjusting the height of the pillow. In order to minimize the noise and vibration during the operation, shape memory alloy (SMA) wire is used as an electrically driven actuator instead of the traditional ones such as an electric motor and a hydraulic pump. A coil spring is used to support the patient’s head in neutral position before operation. When the SMA wire is heated by electric current, it starts to contract and makes the coil spring compressed. This procedure makes the head lowered by 50mm in 10 seconds, which means the patient’s neck is extended. After the extension, the SMA wire is released by cooling as the current is switched off. Finally, the restoring force of the coil spring returns the patient’s head to the original position. The variable geometry pillow can provide patients with customized physical treatments by controlling the operational characteristics such as cyclic period, stroke, and speed. To evaluate our device, we compared the magnetic resonance imaging (MRI) data set of a patient in two different postures; when his head is at the neutral position and the lowest position, respectively. In this experiment, we observed slight suction of the nucleus pulposus toward front side of the body at the lowest position, which means an anterior cervical decompression. Since this decompression is conducive to the restoration of the herniated disc, it is expected that this device would be applied to the physiotherapy for the patients after a well-organized clinical trial.

Figure 1. A schematic view of the CAD model of variable geometry pillow and the real prototype manufactured based on the CAD design.

Figure 2. Performance evaluation using MRI scanning and comparison between the images of neutral and extended cervical spine.

Figure 3. Relationship between input current and contraction time and the specification of the device.

REFERENCES


This work was supported by the Korea Foundation for the Advancement of Science & Creativity (KOFAC) grant funded by the Korean Government (MEST) and this pillow device was designed and prototyped in Design For Manufacturing class in Seoul National University.

Y. H. Kim*, S. J. Park, S. I. Kim, H. T. Lee are with the Mechanical and Aerospace Engineering Department, Seoul National University, Seoul 151-742, Korea (corresponding author Y. H. Kim’s e-mail: kim409@snu.ac.kr)

S. H. Ahn is with the Mechanical and Aerospace Engineering Department, Seoul National University, Building 301, Room 1205, Seoul 151-742, Korea (e-mail: ahnsh@snu.ac.kr)

C. Yoon is with the Department of Biomedical Engineering College of Medicine and Institute of Medical and Biological Engineering Medical Research Center Seoul National University Seoul, 110744, Korea (e-mail: chiyul@melab.snu.ac.kr)

S. Chung is with the Department of Rehabilitation Medicine, Seoul National University College of Medicine, Room 12327, Seoul National University Hospital 101 Daehak-Ro, Jongno-Gu, Seoul 110-744, Korea (e-mail: suntcg@snu.ac.kr)
INTRODUCTION AND OBJECTIVES

Cervical Disc Herniation

Cervical Disc Anatomy
- Nucleus Pulposus
- Annulus Fibrosus
- Intervertebral Disc
- Spinal Canal

Causes for Cervical Disc Herniation
- Degeneration
- Trauma
- Disc Herniation
- Inflammation

As the body ages, natural biochemical changes cause discs to gradually dry out, affecting disc height and resilience. Poor posture combined with the habitual use of incorrect body mechanics can place additional stress on the cervical spine.

Current Physical Treatments

- Medication
- Chiropractic
- Physical Therapy
- Other modalities

Intramurcet
- Intramuscular Injection
- Oral Medication
- Physical Therapy

Objectives of Research

Development of a new apparatus actuated by SMA wire which assists neck extension movement as a physical treatment device for cervical disc herniation.

1. Mechanical Design and Manufacturing of A Prototype.

PROTOTYPE DESIGN AND MANUFACTURING

Conceptual Design

Variable Geometry Pillow

Mechanism of Variable Geometry Pillow

1. SMA wire is heated by electric current and starts to contract.
2. SMA wire pulls the horizontal neck gear and that makes the" Shape Memory Alloy"
3. The displacement of neck gear is magnified through the mechanism and then transferred to the vertical neck gear.
4. Head supporting part moves down allowing the patient's neck to be extended.
5. As the SMA wire is released and cooled down, the restoring force of the compressed spring lifts the head up.

First Prototype

Second Prototype

RESULTS, DISCUSSION AND CONCLUSION

Biomechanical Analysis - Method

Biomechanical Analysis - Results and Discussion

Evaluation

Conclusions

1. The nucleus pulposus is stretched by applying vacuum to the body or cervical extension, which means that the cervical vertebrae is subjected to rehabilitation of herniated disc.

2. The variable geometry pillow using SMA wire can allow the patient's herniated discs to do the neck extension exercise while keeping the neck and shoulder pain.

3. The variable geometry pillow is expected to have an clinical effect of restoring the herniated nucleus pulposus.